
A simple amplitude modulated halftoning technique

Shankhya Debnath

August 31, 2024

1 Introduction

Halftoning is a printing technique that simulates continuous-tone images through the use
of dots of varying sizes, shapes, and spacing. This technique is widely used in printing
and digital imaging to reproduce photographs and other images that contain a wide range
of colors or grayscales. The basic idea is to represent different shades of gray by varying
the density and arrangement of black dots on white paper, thus tricking the human eye
into perceiving a smooth gradient.

1.1 Why Halftoning is Necessary

The necessity of halftoning arises from the limitations of printing and display devices,
which often cannot produce the continuous tone required for realistic images. Most
printers, for example, can only apply ink in a binary fashion—either a dot is printed or
it is not. Halftoning allows these devices to create the illusion of different shades of gray
or color by adjusting the size and distribution of the dots. This process is essential for
rendering high-quality images on devices that lack the ability to produce true continuous
tones.

2 Mathematical Background of Halftoning

The halftoning process used in the provided code is based on a mathematical approach
that involves sampling the original image and creating patterns (usually dots) that repre-
sent different intensities of color. The most common halftoning technique is the amplitude
modulation (AM) method, where the dot size varies according to the local intensity of
the image.

2.1 Dot Size Calculation

Given an input image I(x, y) where x and y represent the pixel coordinates, the halftoning
process involves sampling the image in small regions (sample boxes). For each sample
box, the average intensity µ is calculated as:

µ =
1

N

∑
(x,y)∈S

I(x, y)

where S represents the sample box containing N pixels.

1



The dot size d for each sample box is then determined by a non-linear function of the
average intensity, typically a square root function to simulate the human eye’s perception
of lightness:

d = Dmax

√
µ

255

where Dmax is the maximum possible dot diameter corresponding to the sample size
and scaling factor.

2.2 Rotation and Gray Component Replacement (GCR)

In color halftoning, each color channel (Cyan, Magenta, Yellow, and Black) is processed
separately. The channels are often rotated by different angles to prevent the moiré effect,
which is an undesirable artifact caused by overlapping dot patterns. The provided code
allows for the adjustment of these rotation angles.

The Gray Component Replacement (GCR) technique is used to remove a portion of
the gray component from the Cyan, Magenta, and Yellow channels and replace it with
black ink (K channel). This technique is beneficial in reducing ink usage and improving
print quality.

3 Explanation of the Code

The Python code provided implements the halftoning process for both grayscale and color
images using the principles discussed above. The code allows the user to control various
aspects of the halftoning process through a set of parameters.

3.1 Code Structure

The code is structured into a class called HalftoneGenerator, which encapsulates all
the methods necessary to generate a halftone image. The primary methods and their
functions are as follows:

• init : Initializes the class with the path to the input image.

• generate halftone: The main method to generate the halftone image. It accepts
parameters to control the halftoning process, such as sample size, scaling factor,
rotation angles, and output format.

• apply gcr: Applies Gray Component Replacement (GCR) to the CMYK channels.

• create halftone: Generates halftone images for each color channel by calculating
the dot sizes and applying rotations.

• export channel images: Saves the individual color channels as separate images, if
desired.

2



3.2 Controllable Parameters

The code provides a variety of parameters that allow users to customize the halftoning
process:

• sample size: Determines the size of the sample box in pixels. Smaller sample sizes
result in higher resolution but may require more processing time.

• scaling factor: Controls the maximum dot size by scaling the sample size. A
higher scaling factor produces larger dots.

• gray component ratio: Defines the percentage of gray to remove from the CMY
channels and replace with black (K channel).

• filename suffix: A suffix added to the output filename to distinguish it from the
original image.

• rotation angles: Specifies the angles by which to rotate each color channel to
avoid the moiré effect.

• mode: Can be set to ”color” or ”grayscale” to generate a color or grayscale halftone
image.

• enable antialiasing: A boolean option to apply antialiasing, which smooths the
edges of the dots.

• output file format: The format of the output image file, which can be ”jpeg”,
”png”, ”tiff”, or ”default” (same as input).

• save individual channels: A boolean option to save the separate color channels
(C, M, Y, K) as individual images.

• channels file format: Specifies the format of the saved channel images, similar
to output file format.

• channels mode: Can be set to ”color” or ”grayscale” for the individual channel
images.

3.3 Process Overview

When the generate halftone method is called, the following steps occur:

1. The input image is loaded, and the desired parameters are validated.

2. If the image is in color mode, the Gray Component Replacement (GCR) is applied
to separate the CMYK channels.

3. Each channel is rotated by the specified angle, and the halftone pattern is generated
by calculating dot sizes based on the sample box intensity.

4. The halftone images for each channel are optionally saved as individual files, and
then merged to create the final halftone image.

5. The final image is saved in the specified output format.

3



4 Conclusion

Here is an example of how to use the code:

import halftone

h = halftone.Halftone(’/path/to/image.jpg’)

h.make(

style="color", # Can also be "grayscale"

angles=[0, 15, 30, 45], # Use appropriate angles for each channel

output_format="png", # Format for the final combined image

percentage=20, # Percentage of gray component removal

sample=2, # Sample box size

scale=5, # Scale for dot size

save_channels=True, # Enable saving of channels separately

save_channels_format="png", # Format for the separate channel images

save_channels_style="color" # Style for the separate channel images

)

4


	Introduction
	Why Halftoning is Necessary

	Mathematical Background of Halftoning
	Dot Size Calculation
	Rotation and Gray Component Replacement (GCR)

	Explanation of the Code
	Code Structure
	Controllable Parameters
	Process Overview

	Conclusion

