
Methods for Printer Calibration and Characterization

Shankhya Debnath

October 6, 2024

1 Introduction

Printer device characterization is essential to achieve accurate color reproduction. This involves mapping
input digital values (CMYK) to the output colorimetric measurements (such as CIELAB), ensuring that
the printer delivers consistent and predictable results. This chapter covers four key methods used in
Channel-Independent Calibration, Cellular Neugebauer Model, Forward Characterization, and Inverse
Characterization. Each section explains these methods mathematically and provides insights into how
they are implemented in code.

2 Channel-Independent Calibration

Channel-independent calibration focuses on calibrating each color channel (Cyan, Magenta, Yellow)
independently. The method computes the relationship between digital values and color differences in
CIELAB space, assuming no interaction between color channels.

2.1 Mathematical Explanation

The objective is to compute Mi(d), which represents the color difference ∆E∗
ab for a given digital input

d. The formula for ∆E∗
ab is given by:

∆E∗
ab =

√
(L∗

2 − L∗
1)

2 + (a∗2 − a∗1)
2 + (b∗2 − b∗1)

2

where:

• (L∗
1, a

∗
1, b

∗
1): CIELAB values of the bare medium (paper).

• (L∗
2, a

∗
2, b

∗
2): CIELAB values of the printed patch at digital level d.

After computing ∆E∗
ab for each digital value, Mi(d) is scaled such that the maximum digital value

corresponds to the maximum ∆E∗
ab:

Mi(d)scaled = Mi(d)×
dmax

Mi(dmax)

The Python code performs these calculations by first computing the raw device response (unscaled)
and then scaling it to fit the printer’s dynamic range. The inverse of Mi(d) is also computed, allowing
interpolation for calibration purposes.

2.2 Code Implementation

The code computes ∆E∗
ab for each channel independently and scales the values. It also provides a method

to invert the function for device characterization:

M−1
i (d) = interp(Mi(d))

3 Cellular N-Model

The Cellular N-Model addresses the interactions between the colorants (C, M, Y) by dividing the CMY
space into cells. Each cell represents a small region of the color space, and interpolation is performed to
estimate reflectance values within these cells.

1



3.1 Mathematical Explanation

In this model, dot area coverages c, m, and y are normalized within a cell:

c′ =
c− cl
cu − cl

, m′ =
m−ml

mu −ml
, y′ =

y − yl
yu − yl

where cl, ml, and yl are the lower bounds, and cu, mu, and yu are the upper bounds of the cell.
The reflectance R at a point inside the cell is estimated using trilinear interpolation:

R =

8∑
i=1

wiPi

where wi are the interpolation weights and Pi are the reflectance values at the cell’s vertices.
Neugebauer spectral regression is used to optimize the Neugebauer primaries. This is done by solving

a least-squares problem:
Popt = (WT

trainWtrain)
−1WT

trainRtrain

where Rtrain is the training reflectance data and Wtrain are the dot area weights.

3.2 Code Implementation

The Python code normalizes the dot area coverages and applies trilinear interpolation within the cell.
It also performs regression to find the optimal Neugebauer primaries based on spectral data. The goal
is to minimize the difference between predicted and measured reflectance values.

4 Forward Characterization

Forward characterization refers to predicting the output color (CIELAB) given a set of input digital
values (CMYK). This method allows the printer to estimate the color appearance based on the input
values.

4.1 Mathematical Explanation

Given a set of known (CMYK,LAB) pairs, interpolation is used to predict LAB values for any given
CMYK input:

L∗ = fL(C,M, Y ), a∗ = fa(C,M, Y ), b∗ = fb(C,M, Y )

where fL, fa, and fb are interpolation functions based on the known data points.
The Python code uses piecewise linear interpolation to create functions for L∗, a∗, and b∗ based on

the known CMYK inputs. These functions are then used to predict the LAB values for new inputs.

4.2 Code Implementation

The code takes a set of known (CMYK,LAB) values and performs piecewise linear interpolation for each
channel. It constructs interpolation functions for L∗, a∗, and b∗, which are then used to predict color
appearance.

5 Inverse Characterization

Inverse characterization is the process of determining the CMYK values required to achieve a desired
CIELAB target. It essentially inverts the forward characterization model.

5.1 Mathematical Explanation

The goal of inverse characterization is to compute the CMYK values required to achieve a specific LAB
target (L∗, a∗, b∗). This is done by inverting the interpolation functions:

C = f−1
C (L∗, a∗, b∗), M = f−1

M (L∗, a∗, b∗), Y = f−1
Y (L∗, a∗, b∗)

These inverse functions allow for the calculation of the CMYK values necessary to achieve the target
LAB values.

2



5.2 Code Implementation

The code uses interpolation to invert the mapping between (LAB,CMYK). It first constructs the inter-
polation functions based on known data and then uses these functions to find the CMYK values that
correspond to a given LAB target.

6 Conclusion

The four methods discussed—Channel-Independent Calibration, Cellular N-Model, Forward Characteri-
zation, and Inverse Characterization—are critical in the process of printer device characterization. Each
method provides a mathematical framework for accurately predicting and calibrating printer outputs. By
combining these methods, a printer can be characterized and calibrated to ensure accurate and consistent
color reproduction.

3


