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Abstract

This document describes a SCIELAB-inspired local color-difference
demonstration. The goal is to combine color-difference metrics (e.g.,
CIEDE2000 or Euclidean CIELAB) with a multi-scale spatial inte-
gration to better approximate perceived differences in images. The
document includes background theory, a mathematical description of
the simplified SCIELAB-like pipeline implemented, results on test dis-
tortions, and interpretation of the outcomes.

1 Background

Standard pixelwise color-difference metrics treat each pixel independently
(e.g., compute ∆E between corresponding pixels). However, human percep-
tion of color differences depends on spatial context: small high-frequency
chromatic noise may be less visible than broad low-frequency color shifts.
SCIELAB is a model that modifies color-difference computation to account
for spatial integration and masking across spatial frequency channels. The
implemented demo is a simplified, practical approximation to these ideas.

2 Mathematical model

Let the reference image in CIELAB be Lr(x, y), ar(x, y), br(x, y) and the test
image be Lt, at, bt. A purely pixelwise (CIE76) color difference map is:

∆E76(x, y) =
√
(Lr − Lt)2 + (ar − at)2 + (br − bt)2. (1)

If available, a more perceptually accurate pointwise metric such as CIEDE2000
may be used in place of ∆E76.
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2.1 SCIELAB-like multi-scale integration

SCIELAB computes differences at multiple spatial scales representing band-
pass channels of the visual system. A simplified, computationally-efficient
approximation implemented here is the multi-scale Gaussian smoothing ap-
proach. For a given scale σ we define smoothed channels:

L(σ)
r = Gσ ∗ Lr, a(σ)r = Gσ ∗ ar, b(σ)r = Gσ ∗ br, (2)

where Gσ is an isotropic Gaussian kernel of standard deviation σ and ∗
denotes convolution. Similarly for the test image.

At each scale we compute a local difference map
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The final SCIELAB-like map is a weighted sum across scales:

DSCIE(x, y) =
∑
i

wi d
(σi)(x, y),

∑
i

wi = 1. (4)

The weights wi reflect the relative perceptual importance of each spatial
scale (low-frequency channels may have greater weight for large-color differ-
ences, while higher-frequency channels capture fine detail and noise).

2.2 Relation to human CSF and masking

A more complete SCIELAB model multiplies band-limited differences by
a contrast-sensitivity function (CSF) and applies masking functions that
reduce sensitivity when a strong background stimulus is present in the same
band. In the simplified demo, the Gaussian smoothing across multiple scales
acts as a proxy for bandpass channel responses, and weighting mimics the
band importance. Detailed CSF/masking modeling is left for later extension.

3 Implementation details

The method was implemented as follows:

• Convert sRGB images to CIELAB (D65) using standard transforma-
tions. When the environment provides a CIEDE2000 implementation
we compute both per-pixel CIEDE2000 and the CIE76 metric as fall-
back.
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• Generate two synthetic distortions to demonstrate behavior: a hue-
shift (global hue rotation in HSV space) and chroma noise (additive
Gaussian noise on the a, b channels in Lab).

• Compute per-pixel ∆E (CIE76 or CIEDE2000) and compute multi-
scale smoothed Lab channels at scales σ = 1, 2, 4 with weights w =
[0.5, 0.3, 0.2] (these parameters are tunable).

• Visualize the maps and compute summary statistics such as mean
pixelwise ∆E and mean SCIELAB-like DSCIE for each distortion.

4 Results

The demo saved the main visualization figure and normalized difference
maps.

4.1 Qualitative observations

• The pixelwise ∆E map for chroma noise contains a large amount
of high-frequency energy, reflecting localized chromatic perturbations.
The SCIELAB-like map suppresses much of this fine-grained noise due
to smoothing at multiple scales, resulting in a lower average map value
and visually weaker regions compared to broad hue shifts.

• The hue-shift distortion produces coherent, low-frequency differences
that remain salient in the SCIELAB-like map; thus the SCIELAB-
like metric emphasizes these visible changes as expected from human
perception.

5 Inference and discussion

The simplified SCIELAB-like method implemented here demonstrates the
qualitative advantage of accounting for spatial integration when assessing
perceived color differences:

• Multi-scale smoothing reduces the effective weight of high-frequency
chromatic noise while preserving broad, salient chromatic changes.
This behavior aligns with human sensitivity where noise-like high-
frequency chromatic variation is typically less visible.
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• The method is computationally efficient and easy to tune (adjust σ
and w), making it useful for quick assessments and for guiding image
processing tasks such as local compression or retouching.

• Limitations: the approach approximates bandpass channels by Gaus-
sian lowpass and lacks explicit CSF-based weighting and masking. For
quantitative correlations with psychophysical data, a fuller SCIELAB
implementation (with band-pass filtering, CSF weighting, and mask-
ing models) is recommended.

6 Conclusion

The SCIELAB-like multi-scale difference map is a practical enhancement
over pixelwise ∆E for many image-quality assessment tasks. It better cor-
relates with perceived salience of color differences and is easy to implement.
The demo files and saved visual outputs provide a clear illustration of the
approach on typical distortions.
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