Spectral Reconstruction from LAB Data Using Neural Networks

Shankhya Debnath
September 13, 2024

1 Introduction

Spectral reconstruction refers to the process of recovering the spectral reflectance of an object from
limited colorimetric data, such as CIE LAB values. This process is crucial in many applications, such as
digital imaging, color reproduction, and computer vision, where accurate spectral information is required
for tasks like metamerism reduction and accurate color rendering under varying illuminants.

The challenge of spectral reconstruction stems from the fact that human color vision is trichromatic,
meaning that the perception of color is reduced to just three numbers (e.g., CIE XYZ or LAB), while
the full spectral reflectance is typically a continuous function. This leads to a non-invertible problem
since multiple spectral distributions can map to the same colorimetric values. However, under controlled
conditions, machine learning techniques such as neural networks can learn an approximate mapping from
LAB values to spectral reflectance, enabling spectral reconstruction.

2 Experiments

In this work, I have aimed to reconstruct the spectral reflectance of color samples from their CIE LAB
values using a neural network. The Spectral Materials Database was used for extracting spectral data
and their corresponding LAB values. The input to the model is a 3-dimensional vector representing
the LAB values, and the output is a 39-dimensional vector representing the spectral reflectance over 39
wavelengths, ranging from 360 nm to 780 nm at 10 nm intervals.
Let:
Linput = [L7 a, b]

denote the input LAB values, and
Soutput = [1'360, 7370, - - - 7780}

represent the spectral reflectance values over the 39 wavelengths.

3 Data Preprocessing

Before feeding the data into the model, several preprocessing steps are performed. The dataset consists of
color samples with corresponding spectral reflectance values and LAB values. To ensure data consistency,
rows with missing LAB or spectral values are removed. The spectral data is extracted from the dataset
and filtered to include only samples with exactly 39 measurements, corresponding to the 39 wavelengths.
The input LAB values are standardized using a process known as z-score normalization, defined as:

T —p
g

where x is a feature (e.g., LAB values), u is the mean, and ¢ is the standard deviation of the training
set. Standardizing the input ensures that the model can converge faster by providing input features with
a similar scale.



4 Neural Network Model

A feed-forward neural network is employed to approximate the mapping from LAB values to spectral
reflectance. The network consists of an input layer, three hidden layers, and an output layer. Each
hidden layer applies a nonlinear activation function, ReLU (Rectified Linear Unit), which is defined as:

f(z) = max(0, x)

The ReLU activation helps the network to capture complex relationships between input and output, as
it introduces non-linearity into the model.

The layers are structured as follows: - **Input layer**: Takes a 3-dimensional vector corresponding
to the LAB values. - **Hidden layers**: Three fully connected layers with 64, 128, and 256 neurons,
respectively. Each hidden layer applies ReLU activation. - **Output layer**: A fully connected layer
with 39 neurons representing the predicted spectral reflectance values.

The neural network’s operation can be represented mathematically as:

h1 = ReLU(WlLinput + bl)

h; = ReLU(W2h1 + bg)
h3 = ReLU(WghQ + bg)
Soutput = W4h3 + by

where W; and b; are the weights and biases for each layer 7, and h; represents the hidden layer activations.

5 Training the Model

The model is trained using a dataset of LAB and spectral reflectance pairs. The objective is to minimize
the mean squared error (MSE) between the predicted and actual spectral reflectance values. The loss

function is defined as: .

1
MSE = E Z(Soutput,i - Strue,i)2

i=1
where Sguiput,s is the predicted spectral reflectance for the i-th sample, and Sy, is the true spectral
reflectance.

The model is optimized using the Adam optimizer, which is an adaptive learning rate optimization
algorithm. Adam computes individual learning rates for each parameter and updates the weights by
minimizing the loss function using backpropagation.

The model is trained for 100 epochs with a batch size of 16, and a validation split of 0.1 is used to
evaluate the model’s performance on unseen data during training. The model’s performance is evaluated
using several metrics, including;:

e Mean Squared Error (MSE)
e Mean Absolute Percentage Error (MAPE)

e Coefficient of Determination (R-squared)

6 Results

After training, the model is evaluated on the test data. The spectral reflectance predicted by the model is
compared with the true spectral reflectance. For visualization, we plot the actual and predicted spectral
reflectance values for 20 randomly selected samples.

Each plot shows the spectral reflectance values across 39 wavelengths, where the x-axis represents
the wavelength (360 nm to 780 nm), and the y-axis represents the reflectance value. The actual spectral
reflectance is plotted alongside the predicted values to visually assess the model’s performance.

The table below shows the performance of the model on both the training and testing datasets, as
measured by three metrics: Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and
the Coefficient of Determination (R-squared).



Metric Training Testing

MSE 17.2498 21.6648
MAPE 1.0702 0.6152
R-squared 0.9465 0.9282

Table 1: Performance Metrics for Training and Testing Data

7 Observations

The results of the model, as shown in the table, indicate that the neural network performs reasonably
well in reconstructing spectral data from LAB values. The following inferences can be drawn from the
performance metrics:

e Mean Squared Error (MSE): The training MSE is 17.25, and the testing MSE is 21.66. The
relatively low values of MSE suggest that the model is able to approximate the relationship between
the LAB inputs and the spectral reflectance outputs effectively. However, the slightly higher MSE
on the testing data suggests some degree of overfitting, meaning that the model might generalize
slightly less effectively to unseen data.

e Mean Absolute Percentage Error (MAPE): The MAPE for the training set is 1.07%, while
for the test set it is 0.62%. These low values indicate that, on average, the model’s predictions are
very close to the true spectral reflectance values, with errors less than 1.1% across both sets. This
shows the model’s capability to maintain accuracy in its predictions across various samples.

e R-squared (R?): The R-squared values for training and testing are 0.9465 and 0.9282, respec-
tively. These values are close to 1, implying that the model explains over 92% of the variance in
the spectral data. This suggests a strong fit of the model to the data, confirming that the neural
network has captured the essential relationships needed to predict spectral reflectance from LAB
values.

e Generalization: While the testing MSE is higher than the training MSE, the relatively small
difference between the two suggests that the model generalizes fairly well to unseen data. The
close values of the training and testing R? scores reinforce this inference, indicating that the model
has avoided significant overfitting.

Taken together, the three metrics (MSE, MAPE, and R?) indicate that the model is capable of
predicting spectral reflectance with a high degree of accuracy and minimal error, even on test data. The
results demonstrate the effectiveness of using a neural network for this spectral reconstruction task.
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